Accurate Genome Relative Abundance Estimation Based on Shotgun Metagenomic Reads

نویسندگان

  • Li C. Xia
  • Jacob A. Cram
  • Ting Chen
  • Jed A. Fuhrman
  • Fengzhu Sun
چکیده

Accurate estimation of microbial community composition based on metagenomic sequencing data is fundamental for subsequent metagenomics analysis. Prevalent estimation methods are mainly based on directly summarizing alignment results or its variants; often result in biased and/or unstable estimates. We have developed a unified probabilistic framework (named GRAMMy) by explicitly modeling read assignment ambiguities, genome size biases and read distributions along the genomes. Maximum likelihood method is employed to compute Genome Relative Abundance of microbial communities using the Mixture Model theory (GRAMMy). GRAMMy has been demonstrated to give estimates that are accurate and robust across both simulated and real read benchmark datasets. We applied GRAMMy to a collection of 34 metagenomic read sets from four metagenomics projects and identified 99 frequent species (minimally 0.5% abundant in at least 50% of the data-sets) in the human gut samples. Our results show substantial improvements over previous studies, such as adjusting the over-estimated abundance for Bacteroides species for human gut samples, by providing a new reference-based strategy for metagenomic sample comparisons. GRAMMy can be used flexibly with many read assignment tools (mapping, alignment or composition-based) even with low-sensitivity mapping results from huge short-read datasets. It will be increasingly useful as an accurate and robust tool for abundance estimation with the growing size of read sets and the expanding database of reference genomes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative abundance of ‘Candidatus Tenderia electrophaga’ is linked to cathodic current in an aerobic biocathode community

Biocathode microbial communities are proposed to catalyse a range of useful reactions. Unlike bioanodes, model biocathode organisms have not yet been successfully cultivated in isolation highlighting the need for culture-independent approaches to characterization. Biocathode MCL (Marinobacter, Chromatiaceae, Labrenzia) is a microbial community proposed to couple CO2 fixation to extracellular el...

متن کامل

A Statistical Framework for Accurate Taxonomic Assignment of Metagenomic Sequencing Reads

The advent of next-generation sequencing technologies has greatly promoted the field of metagenomics which studies genetic material recovered directly from an environment. Characterization of genomic composition of a metagenomic sample is essential for understanding the structure of the microbial community. Multiple genomes contained in a metagenomic sample can be identified and quantitated thr...

متن کامل

WGSQuikr: Fast Whole-Genome Shotgun Metagenomic Classification

With the decrease in cost and increase in output of whole-genome shotgun technologies, many metagenomic studies are utilizing this approach in lieu of the more traditional 16S rRNA amplicon technique. Due to the large number of relatively short reads output from whole-genome shotgun technologies, there is a need for fast and accurate short-read OTU classifiers. While there are relatively fast a...

متن کامل

Comparing the effectiveness of metagenomics and metabarcoding for diet analysis of a leaf-feeding monkey (Pygathrix nemaeus).

Faecal samples are of great value as a non-invasive means to gather information on the genetics, distribution, demography, diet and parasite infestation of endangered species. Direct shotgun sequencing of faecal DNA could give information on these simultaneously, but this approach is largely untested. Here, we used two faecal samples to characterize the diet of two red-shanked doucs langurs (Py...

متن کامل

Kaiju: Fast and sensitive taxonomic classification for metagenomics

The constantly decreasing cost and increasing output of current sequencing technologies enable large scale metagenomic studies of microbial communities from diverse habitats. Therefore, fast and accurate methods for taxonomic classification are needed, which can operate on increasingly larger datasets and reference databases. Recently, several fast metagenomic classifiers have been developed, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011